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In this document, we will give additional theoretical deriva-
tion of the corresponding sections in the main paper to support
the method we proposed.

I. DERIVATION OF THE VARIATIONS

In this section, we will give the derivation of the two
variations dV and dΣ introduced in Eqn.(11) of Sec.III.C of
the main paper.

Let D = UΣVT by way of SVD, with D ∈ Rm×n and
m ≤ n (it is different from the case m ≥ n in [1]–[4], and thus
different derivations of the variations), Σ ∈ Rm×n diagonal
and U ∈ Rm×m, V ∈ Rn×n orthogonal.

For the given variation dD of D, our goal is to compute the
variations dΣ, dV in two steps. Following [1], we constrain
that the derivation of the variation involves the invariants
associated to its variables. Specifically, dΣ is diagonal, like
Σ, and dU and dV are orthogonal thus satisfy the constraints
UT dU + dUTU = 0 and VT dV + dVTV = 0, respectively
(It is trivial to infer that UT dU and dVTV are antisymmet-
ric).

Step 1: Derivation of dΣ. Firstly, we give the derivation
of the variation dΣ with aforementioned conditions. Taking
the variation of D, we have

dD = dUΣVT + UdΣVT + UΣdVT (S1)

since U and V are orthogonal, we have

UT dDV = UT dUΣ + dΣ + ΣdVTV

⇒ R = AΣ + dΣ + ΣB
(S2)

where R = UT dDV and A = UT dU, B = dVTV. Since
both A and B are antisymmetric, AΣ and ΣB have both
zero diagonal. Furthermore, since dΣ is diagonal, we obtain
dΣ as:

dΣ = Rdiag ⇒ dΣ = (UT dDV)diag (S3)

where we denote Xdiag an arbitrary matrix X with all off-
diagonal elements being 0.

Step 2: Derivation of dV. Since m ≤ n, the system of
equations in [1] for solving the derivation of dV is undeter-
mined in this case. Instead, we first construct a determined
equation system to derive the variation dU in step 2.1, and
further derive the final variation dV in step 2.2 with the
conclusions of step 2.1, Eqn.(S2) and Eqn.(S3).

Step 2.1: From Eqn.(S2), another conclusion can be reached
that

AΣ + ΣB = R−Rdiag

⇒ AΣΣT +ΣBΣT = (R−Rdiag)ΣT = R̄ΣT
(S4)

where, R̄ = R−Rdiag .
With A and B being both antisymmetric, one can construct

the determined equation system and solve it as:

⇒

{
σiBijσj + Aijσ

2
j = R̄ijσj

−σjBijσi −Aijσ
2
i = R̄jiσi

⇒ Aij(σ
2
j − σ2

i ) = R̄ijσj + σiR̄ji

⇒ Aij =

{
(σ2

j − σ2
i )−1(R̄ijσj + σiR̄ji), i 6= j

0 , i = j

(S5)

where σi = Σii. Rewrite the solution of A as A = P ◦
(ΣR̄T + R̄ΣT ) = P ◦ (ΣRT + RΣT ), where

Pij =


1

σ2
j − σ2

i

, i 6= j

0 , i = j

(S6)

Furthermore, with the definition A = UT dU in Eqn.(S2)
and the orthogonality of U, we obtain dU as:

dU = UA⇒ dU = 2U(P ◦ (UT dDVΣT )sym) (S7)

where we denote ◦ the Hadamard product, Xsym =
1
2 (X + XT ). Note that this satisfies the condition UT dU +
dUTU = 0, and thus preserves the orthogonality of U.

Step 2.2: Using the dΣ and dU obtained, one can transform
Eqn.(S1) to the form as:

dD = dUΣVT + UdΣVT + UΣdVT

⇒ΣdVT = UT dD−UT dUΣVT − dΣVT := H
(S8)

This equation admits any solution of the block form dV =
(dV1 | dV2), where dVT

1 := Σ−1
m H ∈ Rm×n (Σm being

the left m columns of Σ) and dVT
2 ∈ R(n−m)×n arbitrary.

To determine dVT
2 uniquely, we resort to the orthogonality

condition

VT dV + dVTV = 0

⇒
(

VT
1 dV1 + dVT

1 V1 VT
1 dV2 + dVT

1 V2

VT
2 dV1 + dVT

2 V1 VT
2 dV2 + dVT

2 V2

)
= 0

(S9)
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Since that VT
1 V1 = I and VT

2 V2 = I by the orthogonality
of V, the block dVT

1 and dVT
2 already satisfy the top left

equation and bottom right equation respectively, and we only
need to check the bottom left (or the top right). We can verify
that dVT

2 = −VT
2 dV1V

T
1 . As this also satisfies the remaining

equation, orthogonality is satisfied. Finally, we obtain dV as:

dV = (dVT )T ⇒ dV = (HTΣ−1
m | −V1Σ

−1
m HV2) (S10)

With Eqn.(S3) and Eqn.(S10), we can replace dΣ and dV
in Eqn.(11) of the main paper with their expressions w.r.t. dD
to obtain the partial derivatives in Eqn.(13) of the main paper.

II. BASIC IDENTITIES

In this section we present some basic linear algebra identi-
ties of matrix inner product that are useful in the computations
of matrix backpropagation. These identities are also presented
in [1] and we list them here for convenient reference and better
understanding of our derivations.

A : B = AT : BT = B : A (S11)

A : (BC) = (BTA) : C = (ACT ) : B (S12)

A : Bdiag = Adiag : B (S13)

A : Bsym = Asym : B (S14)

A : (B ◦C) = (B ◦A) : C (S15)

(A1|A2) : (B1|B2) = A1 : B1 + A2 : B2 (S16)

REFERENCES

[1] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Training deep net-
works with structured layers by matrix backpropagation,” CoRR, vol.
abs/1509.07838, 2015.

[2] Q. Wang, P. Li, and L. Zhang, “G2Denet: Global gaussian distribution em-
bedding network and its application to visual recognition,” in IEEE,CVPR,
2017, pp. 6507–6516.

[3] Z. Huang and L. J. V. Gool, “A riemannian network for SPD matrix
learning,” in AAAI, 2017, pp. 2036–2042.

[4] C. Ionescu, O. Vantzos, and C. Sminchisescu, “Matrix backpropagation
for deep networks with structured layers,” in IEEE, ICCV, 2015, pp.
2965–2973.


